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Limitations of mathematical Programming

Mathematical programming suffers from some limitations :

e Requires an analytical model of the problem
e 'ime-consuming to solve nonconvex problems

e Hard to account for uncertainty

In practice, it may not be suited for online control and complex design problems.
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Reinforcement Learning

Reinforcement learning agents make decisions in a system based on the observed
states in order to maximize the reward gathered.

Environment

State
| Action
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RL agent
Reinforcement learning
e Requires an oracle model
o Differentiates between optimization and execution time

e Solves offline a nonconvex stochastic optimization problem
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Continuous Intraday Market Bidding

An agent can refine its position by buying or selling electricity on the market.
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CID and RL for Controlling a Battery

We assume having a battery that we can charge and discharge, and we want to

use this asset for trading on the CID.

1. State space : physical state of charge of the battery and features of the
current order book

2. Action space : choice between being greedy, i.e., refining the position with
the currently available orders, or waiting for future orders

3. Reward : revenue at each market period
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CID and RL for Controlling a Battery — In practice

We have built an environment from historical market data.

When taking an action, a linear program computes the optimal greedy position.
The choice between the two actions is determined by a recurrent neural network.

Two RL policies are computed, with fitted Q iteration and deep Q network, and
compared to the rolling intrinsic policy that greedily refines it position at each
time step.

5/13



CID and RL for Controlling a Battery — Results
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V(©) r (%) V(€) (%)
Mean  667.9 3.8 669.1 3.9
Min 153.7 -26.7 187.9 -94
25% 490.9 -0.7 501.0 04
50% 649.9 4.0 632.3 3.3
75% 814.1 019 772.0 7.1
Max 1661 40.9 1471.4 19.9
Sum 102,937 - 101,708 -

The RL policies outperform by 4% the rolling intrinsic policy.
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Renewable Energy Community Control

A group of prosumers are interconnected and can exchange electricity within a
local market that is more profitable than the retailer. Each prosumer has to
control when to produce and consume while accounting for physical and market

constraints.

Inject Inject
Inject
Off-take Off-take Off-take
[ 2 V]
P[112(3]4[5]6] P[1121314[5]6] |-—{P[112/3]415]6]

Cl1123[4[5]6] C123|\4 C[112[314[5]6]

Monitoring
Monitoring . = Monitoring
N=
[ ] 1
Repartition keys Repartition keys Repartition keys
¥ ¥ ¥
Retailer 1 Retailer2 | --- |Retailer N

7/13



Renewable Energy Community Control
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Preliminary results indicate that RL is a viable solution that challenges model
predictive control techniques.
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Joint Design and Control

In the current framework, the model is fixed in RL !

In many engineering problems, the environment that is controlled can also be

designed.
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Joint Design and Control

We introduce environment parameters that shall be jointly optimized with the

policy to maximize the return.

Environment

Control Reward Dynamics Design agent
agent e = py (e, A, §¢) Sexr = fip (50, @ §e)

Two agents are learned, one decides the design, the other the actions.
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Joint Design and Control
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e Design / Investments : capacity of the production units and battery
e Control : power output of the units

e Objective : minimize the total costs

We manage to extract optimal designs and optimal policies with RL.
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Conclusion

Reinforcement learning is a promising and powerful tool for sizing and operation !
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